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Abstract

The ALTA 2024 shared task concerned auto-
mated detection of AI-generated text. Large
language models (LLM) were used to generate
hybrid documents, where individual sentences
were authored by either humans or a state-of-
the-art LLM. Rather than rely on similarly com-
putationally expensive tools like transformer-
based methods, we decided to approach this
task using only an ensemble of lightweight “tra-
ditional” methods that could be trained on a
standard desktop machine. Our approach used
models based on word counts, stylometric fea-
tures, readability metrics, part-of-speech tag-
ging, and an information-theoretic entropy es-
timator to predict authorship. These models,
combined with a simple weighting scheme, per-
formed well on a held-out test set, achieving an
accuracy of 0.855 and a kappa score of 0.695.
Our results show that relatively simple, inter-
pretable models can perform effectively at tasks
like authorship prediction, even on short texts,
which is important for democratisation of AI as
well as future applications in edge computing.

1 Introduction

Detecting human- versus AI-generated content is
important, for multiple reasons, including mis-
information detection (Zhou et al., 2023), aca-
demic integrity (Kumar et al., 2024; Zeng et al.,
2024), even healthcare records (McCoy et al.,
2024). Increasingly, documents are likely to be
hybrid-written, with portions of text being AI-
generated, and potentially edited or augmented by
humans. This introduces the challenge of author-
ship attribution of short texts such as individual
sentences within a longer document, which can
confound traditional approaches (Brocardo et al.,
2013). The ALTA 2024 Shared Task is squarely
focussed on this challenge, presenting a sentence-
level authorship attribution task between human-
and AI-generated sentences, where those sentences

belong to a longer, hybrid-written document. Ex-
isting state-of-the-art approaches to this type of
task are larger transformer-based, with models like
SeqXGPT (Wang et al., 2023) and segmentation-
based approaches (Lo et al., 2021) showing strong
performance.

However, for many of the application domains
above, there will likely be a desire to use “tradi-
tional” models for reasons of explainability and
trustworthiness. Also, a current trend in machine
learning is towards the use of lower-dimensional
models, for reasons of speed, accessibility of data,
explainability and ability to run “at the edge” such
as on mobile devices. Motivated by this, and be-
cause we wanted to build on the existing large
academic literature on authorship attribution, we
opted to use “traditional” models such as those
coming from stylometry, linguistics, and informa-
tion theory. In order to experiment with a number
of methods, we developed an ensemble approach
comprising five such models. This ensemble model
performed reasonably well on the held-out test set,
with an accuracy of 0.855 and kappa score of 0.695.
We hope our results demonstrate that relatively sim-
ple, interpretable models can perform well at distin-
guishing AI-generated from human-generated text,
and that these models can still have relevance in a
variety of application domains requiring explain-
able models.

2 Data

The full details of the shared task description can
be found in (Molla et al., 2024). The task consisted
of a training phase (phase-1) where models could
be trained on a training set and tuned/tested on
a development set via multiple submissions, and
then a testing phase (phase-2) where a final model
was assessed on an unseen held-out test dataset.
Our training dataset comprised 212794 data points.
Features included the ID (article ID), ’domain’ (the

mailto:lewis.mitchell@adelaide.edu.au


domain the article belongs to, such as news, aca-
demic, etc.), the sentence to make predictions on,
and the true label of the sentence.

The training dataset was class-imbalanced, with
around two-thirds of its data points belonging to
the ’machine’ class and one-third to the ’human’
class.

3 Methods

Our approach uses an ensemble of five separate
models, the predictions of which are combined
together to make an overall prediction.

3.1 Word counts model

This model uses TF - IDF (Term frequency - In-
verse Document Frequency) to represent the sen-
tences in the dataset. These vector representations
are then classified into "Human" or "Machine" by a
Naive Bayes Classifier. TF - IDF produces a sparse
vector representing relative frequencies of tokens
in a sentence. The Naive Bayes classifier uses this
representation to classify sentences into "machine"
/ "human".

3.2 Stylometry model

This model uses a stylometric measure called "Bur-
rows’ Delta" to classify the sentences. Burrow’s
delta is used to compare stylistic distances between
the texts (Evert et al., 2017). The starting point
represents the text in a document as a bag of words.
The word counts are then converted to relative fre-
quencies to compensate for different text lengths.
For further processing the n most frequent different
words over the whole corpus is chosen. The word
frequencies of all documents can be arranged as a
document X words matrix at this stage after which
word frequencies are standardised, ie, the word fre-
quencies over the whole corpus is normalised such
that their mean is 0 and standard deviation is one.
This results in what is known as ’z-score’, Zi(D) =
(fi(D) - µi) / σi for word ’i’ in document ’D’. The
Burrows Delta ∆B is calculated as a summation
given by

∑n
i=1 |zi(D1) − zi(D2)|. For classify-

ing a text as ’Machine’ or ’Human’, the burrows
delta score for the two labels are compared. The
label with a lesser delta (an indication of stylistic
distance) is chosen as the predicted label for the
text

3.3 Readability metrics model

Textstat1 is a python library that helps extract statis-
tics from text. It helps determine readability, com-
plexity and grade level. We used 21 such metrics to
represent each sentence in the dataset. This dataset
with 21 readability metrics as features was dimen-
sionally reduced using PCA techniques following
which the dataset was reduced to 7 features that
explained 96% of the variance in the data. This
reduced dataset was trained on the K-nearest neigh-
bours model with the ’k’ value set to 5. Predictions
were then made based on this model to classify
each sentence as written by ’Human’ or ’Machine’.

3.4 Part-of-speech model

Stanford CoreNLP (Manning et al., 2014), a nat-
ural language processing tool, is used to parse
sentences and generate hierarchical part-of-speech
(POS) structure trees. After parsing, we simplify
each structure by retaining only the POS tags and
discarding the hierarchy, focusing solely on the
sequential tags representing each sentence’s gram-
matical composition. These POS tags are then
transformed into vector representations using term
frequency (TF) alone, omitting inverse document
frequency (IDF) due to the case-by-case nature of
short texts where IDF is less impactful.

The resulting vectorized POS tag sequences are
used as features to train a K-nearest neighbors
(KNN) model, with the number of neighbors k set
to 3. This KNN model is trained to classify sen-
tences as being either ‘Human’ or ‘Machine’ gener-
ated, leveraging the POS tag patterns as distinguish-
ing linguistic characteristics. Similar techniques to
this have been deployed for related classification
tasks, e.g., persuasion detection (Iyer et al., 2017).

3.5 Information-theoretic model

This model is based on the observation from previ-
ous works on authorship attribution that perplexity
can be an effective indicator of authorship (Beres-
neva, 2016). We define a language model as the set
of conditional probabilities p(w|h), h ∈ H, where
h is the history of n − 1 words before w, and H
is the set of all sequences of length n − 1 over a
fixed vocabulary. The method then predicts the au-
thorship of a particular text T = {w1, w2, ..., wn}
given the histories ha of a set of known authors a
as the author having the lowest perplexity for T |ha,
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or equivalently, the lowest-entropy H(T |ha) =
−

∑
p(T |ha) log p(T |ha).

Inspired by this, we use the following cross-
parsed entropy rate estimator2 h(T ||ha) (Bagrow
et al., 2019; South et al., 2022) to estimate the ex-
tent to which T can be predicted from histories
ha:

h(T ||ha) =
n log2(n− 1)∑n−1
i=1 Λi(T |ha)

, (1)

where Λi(T |ha) is the longest subsequence starting
at position i in the T that appears as a contiguous
subsequence in ha. This estimator has been stud-
ied in simulated contexts in (Bagrow and Mitchell,
2018; Pond et al., 2020) and tested on real datasets
in (Smart et al., 2022). Here we use (1) at the
character-level to predict authorship a from the
author with the lowest h(T ||ha).

3.6 Ensembling method
We explored two schemes for making a prediction
based on the ensemble of input models: a simple
weighting scheme and a random forest-based ap-
proach.

3.6.1 Weighted Vote
This simple ensembling method uses inputs from
all the base models. The individual predictions of
all the models were combined using a weighted
vote, where each model is assigned a weight pro-
portional to its ’kappa-score’ when evaluated on
the phase-1 test set.

3.6.2 Random Forest-based Stacking
Stacking is an ensembling method that combines
the ability of different models to learn different
parts of the problem to achieve a better-performing
model than the individual models themselves. We
used 4 models (all base models except the Part-of-
Speech model) as part of this model.

Stacking involves 2 kinds of models, base mod-
els (Stylometric model, Word-counts model, Read-
ability metrics model and Cross-entropy model in
this case) and the meta-model (Random Forest in
this case). The train data is split into two parts,
training and validation sets. The base models train
on the training set and make predictions for the val-
idation set. Now at this stage, we have base model
predictions as well as true labels for the data points
in the validation set. The meta-model learns the
relationship between the base model predictions
and the true labels. Next, we will have the base

2https://pypi.org/project/ProcessEntropy/

models make predictions on the held-out test set
and the meta-model will use those predictions and
the relationship it had learned previously to arrive
at predictions for the held-out test set.

4 Results

Details of the shared task and the competition struc-
ture are in (Molla et al., 2024). Table 1 shows the
base models’ performance on the phase-1 test set
in terms of both accuracy and the kappa score that
was used for the competition. The information-
theoretic model was the best-performing model
with an accuracy of 0.847 and kappa score of 0.670.
The other models performed comparably, with ac-
curacies in the range of 0.670-0.747, and corre-
sponding kappa scores between 0.273-0.512.

Table 1: Base Model Performances on the phase-1 test
set.

Model Name Accuracy Kappa

Stylometric Model 0.670 0.273
Part-of-speech Model 0.720 0.389
Word Counts Model 0.747 0.512
Readability Model 0.742 0.432
Information-theoretic Model 0.847 0.670

Table 2 shows the models and the kappa scores
achieved on the phase-2 test set. The Weighted
vote model has performed slightly better than the
Stacked model using Random Forest. Note that
in both cases there appears to be a slight benefit
in ensembling all models together over just using
the best-performing information-theoretic model,
demonstrating the value of combining the strengths
of multiple models.

Table 2: Meta Model Performances on the phase-2 test
set.

Model Name Accuracy Kappa

Weighted Vote 0.855 0.695
Stacking (RF) 0.853 0.684

The readability based model which initially had
22 features was reduced to 7 features using PCA.
This was done because KNN performs better in
low-dimensional space. Figure 1 shows the plot of
first two principal components. While it is clear
from the figure that both classes show a lot of over-
lap, it is also noteworthy that human points have

https://pypi.org/project/ProcessEntropy/


a more expanded spread compared to the machine
class.

A similar trend is observed in plots between
other principal components as can be seen in Fig-
ure 2 where we see that the machine data points
seem to be concentrated in certain regions whereas
the human data points expand out a bit more than
the other class. This might suggest that the human
style of writing can have more variability compared
to that of AI.

Figure 1: PCA of readability metrics.

5 Discussion

Our system was relatively simple, and therefore
unlikely to ever achieve the highest scores in this
Shared Task. Nonetheless, we think it performed
very well, and demonstrates that simple models
based on traditional methods can still be effective at
distinguishing between human- and AI-generated
text. How long this remains the case as generative
large language models increase in sophistication
remains an open question, however. Our approach
had a number of limitations, which area left as fu-
ture work. Firstly, we didn’t consider the article
structure, instead treating each individual sentence
independently. This was partly in the interests of
time, and because some methods used were less
amenable to incorporating hierarchical structure
than others. Hierarchical document structure could
be incorporated in some methods, for example the
naive Bayes model (Flach and Lachiche, 2004).
We also did not always consider the domain of
the document in the classification, for example in

the information-theoretic model. This could be in-
corporated by splitting the documents in ha based
on domain, which might lead to an improvement
in classification performance. Finally, we could
consider each model’s prediction confidence as
part of the ensembling method. In the methods
deployed here we only used the binary outcome
predictions from each model as inputs to the en-
sembling method. However, incorporating a mea-
sure of the confidence of each model as inputs into
the ensembling procedure is a more principled ap-
proach and has potential to improve the predictions,
particularly in borderline cases where there might
be disagreement between models. This would be
straightforward to do for e.g., naive Bayes which
produces probabilities as predictions, but would
require the development of some heuristics for
other methods, e.g., potentially using the differ-
ence in cross-parsed-entropy rates as a measure of
prediction confidence for the information-theoretic
model.
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