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Abstract

Organisation of information about genes, ge-
netic variants, and associated diseases from vast
quantities of scientific literature texts through
automated information extraction (IE) strate-
gies can facilitate progress in personalised
medicine.

We systematically evaluate the performance of
generative large language models (LLMs) on
the extraction of specialised genetic informa-
tion, focusing on end-to-end IE encompass-
ing both named entity recognition and rela-
tion extraction. We experiment across mul-
tilingual datasets with a range of instruction
strategies, including zero-shot and few-shot
prompting along with providing an annotation
guideline. Optimal results are obtained with
few-shot prompting. However, we also identify
that generative LLMs failed to adhere to the in-
structions provided, leading to over-generation
of entities and relations. We therefore carefully
examine the effect of learning paradigms on
the extent to which genetic entities are fabri-
cated, and the limitations of exact matching to
determine performance of the model.

1 Introduction

There is a persistent need for organised genetic in-
formation to support advancements in scientific dis-
covery and personalised healthcare (Putman et al.,
2023; Dagdelen et al., 2024). Typically, this or-
ganisation process involves extraction and storage
of key entities and their relationships from vast
amounts of biomedical literature into databases
by biocurators. This is an arduous, costly, time
consuming and manual task, prone to errors due
to fatigue and volume (Goel et al., 2023; Chang
et al., 2024). With the exponential growth of liter-
ature, efforts have been directed towards automat-
ing this process with natural language processing
techniques to streamline curation of biomedical
literature, saving time and effort (Xu et al., 2024;

Singhal et al., 2016; Khordad and Mercer, 2017;
Goel et al., 2023).

Early solutions for automation explored rule-
based, machine learning, and/or statistical methods
for text mining of biomedical literature (Sekimizu
et al., 1998; Temkin and Gilder, 2003; Coulet et al.,
2010). Most such approaches failed to reach ad-
equate accuracy levels to be used practically for
biocuration, one of the key limitations being the
weak generalisation of models (Elangovan et al.,
2022). Despite that, certain approaches, for exam-
ple (Khordad and Mercer, 2017; Verspoor et al.,
2016), provided good results showing that auto-
mated methods have good potential to extract infor-
mation from biomedical literature (Singhal et al.,
2016; Dagdelen et al., 2024).

The natural language processing (NLP) task of
information extraction (IE) addresses extraction of
structured knowledge from natural language texts
(Xu et al., 2024). This process is pivotal for au-
tomating curation of biomedical information.

In this work, our focus is on the IE tasks of
Named Entity Recognition (NER) where entity
spans are identified and annotated with a type, Re-
lation Extraction (RE) where specified entity types
are identified and the relation type between the
identified entities is classified, and end-to-end en-
compassing both NER and RE steps, NERRE. We
target entities related to disease-associated genetic
variation, including genes, mutations, and the dis-
eases themselves.

Recently, methods based on generative AI have
shown promising results for biomedical IE (Xu
et al., 2024; Goel et al., 2023; Dagdelen et al.,
2024). Hence, in our approach we explore the
use of generative Large Language Models (gen-
erative LLMs) through prompt engineering. Gen-
erative LLMs are a specific class of LLMs that
utilise decoder-only algorithms to generate content
in response to a prompt, or instruction, on the basis
of a pre-trained language model. We specifically



consider the Generative Pre-trained Transformer
(GPT) models (Yu et al., 2023; Sainz et al., 2024).

The output of a generative LLM depends directly
on the prompt that is provided as input, and the task
of developing a suitable prompt for a given task or
information need is termed prompt engineering (Sa-
hoo et al., 2024). A prompt can be crafted adhering
to in-context learning paradigms, such as zero-shot
or few-shot instructions. This involves providing
either no (zero) or a small number (few) examples
of the solution to a task in the prompt itself, to
guide the generative LLM to the desired output.

We explore the effectiveness of utilising a gen-
eral generative LLM for end-to-end IE of genetic
information. Our key contributions are:

• Experimentation with a range of instruction
strategies, including zero-shot and few-shot
prompting, across three genetic variant litera-
ture datasets, including one Spanish-language
corpus.

• A detailed exploration of the limitations of
using generative technologies for extraction
of highly domain-specialised information.

This expands prior work on genetic IE both in
breadth and depth, providing insight into the most
effective use of generative LLMs for these tasks.

2 Methods

Our experiment involved an end-to-end IE pipeline
with a manually crafted library of prompts for each
IE task. We explored the impact of these prompts
with the inclusion of examples under various in-
context learning paradigms and the addition of an
annotation guideline.

After pre-processing, prompts were sent to
GPT-3.5 Turbo via OpenAI API calls to perform
the specified task. The results were then post-
processed to conform to the brat format (Stenetorp
et al., 2012) for evaluation. This involved map-
ping each entity presented in the system output to a
specific span of text where the entity appears. We
processed each entity/relation in order, so that the
first entity term in the output was mapped to the
first occurrence of the term in the text, etc.

During post-processing of the results, halluci-
nated instances – defined here as entities or rela-
tions that could not be projected into the relevant
text – were identified and discarded. These hal-
lucinated instances were classified into two types,

namely, over-generated hallucinations and fabri-
cated hallucinations. Over-generated hallucina-
tions are instances containing one or more entities
that were found in the accompanied text but could
not be mapped to any position on the text, after pre-
vious entities were mapped. Fabricated instances
included one or more entities and/or relations that
were not found in the text at all.

A method overview appears in Figure 1.
Code is available at https://github.com/
Milindi-Kodikara/RMIT-READ-BioMed/
releases/tag/v2.0.

2.1 Data

Three annotated genetic variation corpora, Geno-
VarDis for NER (Agüero, 2024), TBGA for RE
(Marchesin and Silvello, 2022) and Variome for
NER+RE (Verspoor et al., 2013), were utilised.

Distribution of data in these three datasets is
shown in Table 1. More details are provided in the
Appendix; the schema of each dataset is outlined
in Table A1 and the entity and relation types are
summarised in Table A2.

2.1.1 GenoVarDis (Agüero, 2024)

We utilised the dataset provided for the Geno-
VarDis challenge (Agüero-Torales et al., 2024;
Chiruzzo et al., 2024) consisting of Spanish-
language texts manually translated from 497
English-language biomedical texts (titles and ab-
stracts), and 136 Spanish-language biomedical
texts (titles and abstracts) directly available from
PubMed1. The data was split 70%-10%-20% for
training, development (not used here) and test
sets. We present results for experiments utilis-
ing both Spanish and English language prompts
(cross-linguistic setting, following (Kodikara and
Verspoor, 2024)).

2.1.2 TBGA (Marchesin and Silvello, 2022)

TBGA dataset was specifically created for biomed-
ical RE using the DisGeNET database, which is
one of the largest collections of genes and vari-
ants involved in human diseases (González et al.,
2019). TBGA dataset is one of the largest pub-
licly available English-language datasets created
for genetic RE, with 700K publications with 200K
instances and 100K gene-disease pairs annotated
semi-automatically.

1https://pubmed.ncbi.nlm.nih.gov/

https://github.com/Milindi-Kodikara/RMIT-READ-BioMed/releases/tag/v2.0
https://github.com/Milindi-Kodikara/RMIT-READ-BioMed/releases/tag/v2.0
https://github.com/Milindi-Kodikara/RMIT-READ-BioMed/releases/tag/v2.0
https://pubmed.ncbi.nlm.nih.gov/


Figure 1: Overview of method

Table 1: Dataset statistics

Dataset
Train set Test set Total

Avg text length
No. Texts Gold entities Gold relations No. Texts Gold entities Gold relations No. Texts Gold

GenoVarDis 427 8199 0 136 2101 0 563 10300 248

TBGA 178264 356528 178264 5 41032 20516 178269 596340 25

Variome 10 710 355 110 8590 4295 120 13950 331

2.1.3 Variome corpus (Verspoor et al., 2013)

The small Variome dataset of English-language in-
herited colorectal cancer texts is richly annotated
for genetic variants, diseases and relations, relevant
for cataloguing and interpreting human generic
variation and its relationship to disease.

2.2 Model

Open AI’s GPT model gpt-35-turbo-16k was
utilised to perform the IE tasks. This model was
selected as it has been shown to be effective for
various IE tasks across domains (see Section 4).

Requests were sent to the Chat Completions API,
containing prompts and our API key, using Azure
Open AI to receive the responses containing the
extracted tuples and triplets in the requested format.

2.3 Prompts

Each manually crafted prompt contains attributes
as shown below.

• prompt_id: A unique identifier for the
prompts. The prompt_id is a combination of
the prompt index and the number of examples
in the prompt. For cross-linguistic prompts,
for NER, the prompt_id has “en” and “es”

appended to the tail to distinguish between
English and Spanish language instructions.

• instruction: Outline of the task for the
model. (Example in Section A.1).

• guideline: Task annotation guidelines. This
attribute varies between tasks as the relevant
entities and relations to extract, as well as their
definitions, differ. (Example in Section A.2.)

Adding complexity and clarity to the task by
providing an annotation guideline for the enti-
ties has been shown to increase performance.
For example, provision of annotated guide-
lines in a prompt with no examples (zero-shot)
has led to an improvement on the performance
of LLMs on IE (Sainz et al., 2024).

• examples: Number of examples to be em-
bedded depending on the learning paradigm.
Experimented values: {0, 1, 5, 10}.

Each example consists of a text and associ-
ated annotations sampled randomly from the
training datasets.

• expected_output_format: Defines the ex-
pected output structure and format. This at-
tribute is a fixed string value and varies based
on the task. The aim is to provide further



Figure 2: Example prompt

clarity on the task, thereby improving perfor-
mance (Jiao et al., 2023). (Example in A.3).

All results are requested in tab separated vec-
tor (TSV) format. We further specify the head-
ers for the extracted tuples and triplets.

• text: The embedded text from biomedical
literature.

The prompt library consisted of 16 prompts with
RE and NER+RE each being explored using 4
prompts and NER being explored using 8 prompts,
4 prompts for each language. The prompt library
was manually crafted and refined iteratively based
on trial and error with training instances.

An example from the prompt library is shown in
Figure 2.

2.4 Evaluation

Industry standard metrics of Precision, Recall, and
F1 score are used to evaluate performance.

The brateval2 tool tailored for evaluation of data
in the BRAT format3, is used to compare extracted
entities and/or relations against the gold standard
data (Albahem et al., 2013).

Figure 3: Results for varying number of shots for Geno-
VarDis (NER), grouped by prompt language

3 Findings

3.1 Few shot prompting leads to higher entity
recognition

Optimal performance was obtained utilising
prompts with five to ten examples for GenoVarDis
(NER) and Variome (NER+RE) as shown in Fig-
ures 3 and 5. Worst performance for both datasets
was observed for prompts with no examples (zero
shot). In contrast, best performance for TBGA
on RE was obtained through zero-shot prompting
(Figure 4).

2https://github.com/READ-BioMed/brateval
3https://brat.nlplab.org/

https://github.com/READ-BioMed/brateval
https://brat.nlplab.org/


Figure 4: Results for varying number of shots for TBGA
(RE)

Figure 5: Results for varying number of shots for Vari-
ome (NER+RE)

A significant improvement in the F1 score could
be observed for entity recognition with the in-
cremental addition of examples in the prompts
whereas little variation was observed for RE. De-
spite that, it should be noted that highest recall can
be observed for the prompt with ten examples for
RE showing that this addition has led to a better
identification of the entities and relations. More-
over, more variation in types extracted could be
observed with the increase of examples, for exam-
ple, Figure 6 shows types such as ‘cohort-patient’
and ‘body-part’ being extracted for Variome.

The increased performance utilising few-shot
prompting can be attributed to the ability of gener-
ative LLMs to learn in-context which was achieved
with the addition of examples of texts, extracted
genetic entities and identified relations, and their
associated labels (Brown et al., 2020).

Figure 6: Extracted entity types for varying number of
shots for Variome (NER+RE)

3.2 High recall, low precision across tasks for
few-shot prompting

It can be seen across all three IE tasks that recall
is higher than precision for few-shot prompting.
This leads us to infer that a significant amount of
correct entities matching the ground truth were
captured despite generating false positive entities
(see further detail in Figures A10 and A11).

This could be attributed to the generative nature
of these models leading to over-generation, thereby
extracting a large number of truly correct entities
while also producing many false positives.

3.3 Low recall, high precision across tasks for
zero-shot prompting

It can be observed across tasks that recall is lower
and precision is higher for zero-shot prompting.
For example, for NER, one of the reasons was the
model over-generating tuples with the misaligned
entity position in place of the extracted span, for
example for the label ‘Disease’ the model would
state ‘0-29’ instead of the span name ‘Glioblas-
toma multiforme congenito infratentorial’ which
was found at ‘11-59’.

This could be deduced to be due to the model
being unable to learn in-context due to the lack
of examples, leading to identification of a limited
number of correct entities and over-generating false
negative entities (Brown et al., 2020).

3.4 Lesser the shots, higher the hallucinations

One of the key failures observed was the inability
of the model to adhere to the task outlined in the
prompt leading to hallucinations and incorrect ex-
traction of entities and relations. Hallucinations
were entities that were discarded as fabrications or



Figure 7: Hallucinations by type for varying number of
shots for TBGA (RE)

over-generations (see definitions, Section 2).
Extracting named entities from the GenoVarDis

dataset resulted in a majority of over-generated
and a minute amount of fabricated hallucinations
for all prompts, with the exception of the Spanish-
language prompt adhering to zero-shot prompt-
ing which resulted in an extensive amount of fab-
rications. Extracting relations from the TBGA
dataset resulted mainly in fabricated instances
while end-to-end NER+RE utilising the Variome
dataset showed a mix of both hallucination types.

A decrease in the amount of hallucinated in-
stances was observed with the addition of examples
in the prompts. A gradual increase in the number
of matching instances extracted can be observed
with the increase in the number of examples (see
detail in Figures A1, A2, A3).

Overall, these hallucinations may be due to var-
ious factors, including the complexity of the IE
tasks, limitations in the prompts with regard to pro-
viding context for the tasks, the generative nature
of the model used, and limitations due to the LLM
not being specifically trained on biomedical data.
Further breakdown of hallucination types can be
found in Figure 7, or Appendix Figures A4-A5.

It should be noted that issues such as fabrication
and over-generation are a result of the generative
nature of the model explored in this paper. Such
issues are not encountered with traditional informa-
tion extraction and classification approaches.

3.4.1 Fabrications
Upon manual inspection of the extracted data, hal-
lucinated data and the gold standard data, the fol-
lowing reasons for the fabrications were identified.

1. Letter case of the entity not matching the en-

tity in the text, for example hallucinated entity
‘Carcinomas basocelulares’ being stated in all
lower case in the associated text.

2. Spans containing the desired entity with fab-
ricated words or characters before or after
the identified entity, for example, the entity
‘dipeptidyl peptidase IV’ in a TBGA dataset
text is extracted by the model as ‘dipeptidyl
peptidase-4 inhibitor’.

3. Entity spans being produced instead of the en-
tity string being extracted. This phenomenon
was mainly observed for the Spanish language
dataset, GenoVarDis, when using zero-shot
prompting. Based on an analysis of the break-
down of types of the entities impacted by this,
a majority of these positions were annotated
as type ‘Gene’ (Figure 8).

4. Complete fabrications which could not be
mapped to any position in the text, for ex-
ample, the extracted relation ‘Gene: SIVA
Disease: NA’ was discarded as a hallucina-
tion due to ‘NA’ not appearing in the corre-
sponding text from the TBGA dataset, ‘Thus,
the role of SIVA in tumorigenesis remains un-
clear.’.

5. The model would not adhere to the outlined
output structure.

3.4.2 Over-generation
Entity recognition resulted in the majority of the
over-generated instances observed. While most of
these instances could be mapped to a position in
the relevant text, the output included more entity
mentions than were actually stated in the text. As
such, these entity tuples being marked as hallucina-
tions. For example, in one text in the GenoVarDis
dataset, the gene ‘PMP22’ is mentioned in seven lo-
cations while the model hallucinated an additional
34 instances.

3.5 Exact matching leading to high amounts
of false positives

Extracted tuples and triplets were neither man-
ually manipulated nor normalised during post-
processing, as our goal was to explore the direct
performance results, based on exact matching of
the extracted entities and the identified relations
relations with the gold standard data.

One of the contributing factors to the inadequate
performance of the tasks can be attributed to the
model labelling entities with fabricated labels, for



Figure 8: Hallucinations by entity type for varying num-
ber of shots for GenoVarDis (NER)

example, a large portion of the extracted entities
for the Variome corpus reference the label ‘Dis-
ease’ for what should have been ‘disease’ entities.
This led to a high number of false positives, Figure
6. While easily resolved through case-insensitive
matching, this illustrates how the LLM did not
strictly follow instructions; the annotation guide-
line only specifies ‘disease’ as a label option for
the entities.

We have observed that the model mislabels en-
tities and misidentifies relations, especially when
the entities and the relations are highly specific to
the biomedical domain.

Furthermore, one of the key issues that arises due
to exact matching is when the model extracts the
entities and identifies the correct relations whilst
adding further information to the span, introducing
false positives. For example, the target Variome
corpus entity ‘characteristic microsatellite instable’
was extracted as ‘characteristic microsatellite insta-
ble tumours’.

Issues seen with exact matching could be
avoided with normalisation, error correction or
changes to the evaluation settings such as re-
laxed/overlap matching and considering multiple
plausible annotations, similar to the methodologies
outlined by Dagdelen et al. (Dagdelen et al., 2024).

4 Related Work

The availability of generative AI and LLMs has
driven substantial developments in NLP. These
LLMs are being used for IE due to their capabili-
ties related to text generation, understanding and
generalisation.

4.1 IE tasks utilising LLMs

Research has explored joint IE tasks, NER and
RE, utilising LLMs for successful IE using sci-
entific datasets specifically designed to test IE
of biomedical data (Dagdelen et al., 2024; Goel
et al., 2023). Research shows that general-domain
LLMs show great performance when various learn-
ing paradigms were utilised in their methods for
IE from biomedical text, regardless of not being
trained specifically for specific domains, specifi-
cally (Wadhwa et al., 2023; Agrawal et al., 2022).
Moreover, LLMs have been shown to provide great
results for medical NLP, which closely relates to
biomedical NLP (Agrawal et al., 2022; Goel et al.,
2023).

While not a generative LLM, BERT pre-trained
and fine-tuned for biomedical data has shown great
performance for task-specific NLP models com-
pared to general-domain LLMs (Gu et al., 2020).
The general-domain LLM, GPT-3, has been shown
to perform close to fully supervised models and out-
perform existing solutions for IE of biomedical data
for the task of RE (Wadhwa et al., 2023; Agrawal
et al., 2022). When exploring gene set summarisa-
tion using zero-shot learning, it was found that the
new GPT models performed well and were free of
hallucinations but were unable to generalise miss-
ing key terms along the way (Joachimiak et al.,
2023).

Inspired by the above research, this project
utilised a general-domain generative LLM, GPT-
3.5 Turbo, to conduct experiments on IE tasks to
determine the performance of various prompting
strategies and undertake a comprehensive analysis
on how effectively genetic entities and relations
can be extracted from scientific literature.

4.2 Prompt engineering for domain specific
IE tasks

Variation in prompt strategies for IE has been
shown to have a great impact on results with LLMs
(Peng et al., 2023; Xu et al., 2024). There are
many ways to design prompts under various learn-
ing paradigms and methods such as few-shot, zero-
shot, chain-of-thought and question answering.

NER has been extensively investigated by re-
searchers under learning paradigms such as few-
shot learning, showing successful extraction of in-
formation across domains such as Politics, Liter-
ature, and Natural Sciences (Ashok and Lipton,
2023). Few-shot prompting has resulted in great



performance for both IE tasks, NER and RE, across
various domains (Wadhwa et al., 2023; Goel et al.,
2023). For example, performance achieved was
found to be close to fully supervised models utilis-
ing 10 examples, which was found to be the optimal
number of examples, adhering to the few-shot learn-
ing paradigm (Wadhwa et al., 2023). Both zero-
shot and few-shot prompting for IE from clinical
text (which closely relates to genetic text) has been
shown to be effective using handcrafted prompt
templates provided to a general-domain GPT based
LLM (Agrawal et al., 2022). With the provision
of annotated guidelines in the prompt along with
fine-tuning, zero-shot results have shown to im-
prove IE tasks (Sainz et al., 2024; Marchesin and
Silvello, 2022). The above research indicates pro-
viding more context to the prompts provided to the
models lead to higher performance of IE tasks. It
can also be noted that prompt engineering has been
conducted to explore few-shot learning on biomed-
ical data, it has not been compared with other learn-
ing paradigms for NER, RE tasks. Findings from
above literature influences our research where we
test the performance of NER, RE and joint NER
and RE (NER+RE) with complex prompts with
annotation guidelines under various paradigms.

Across various domains there are many inves-
tigations of the effect the output structure has on
the performance of IE tasks. It was discovered that
requesting the output from the model to be in a
specific structure leads to an increase in accuracy
of information extracted. Requesting the output
to be in a table format via the prompt, where the
table headers were either specified by the user or
inferred using context by the models (Jiao et al.,
2023); extracted text being output as a summary
(Chang et al., 2024); structured output requested
in the YAML format (Goel et al., 2023); output
summarised into a natural sentence according to
a predefined pattern and then extracted into an
end-to-end (E2E) output template which has place-
holders for the expected triggers and arguments
(Hsu et al., 2021) are examples of different output
formats which impacted performance of IE tasks.
Inspired by the aforementioned research, in our
approach we request the output to be structured
in the tab separated vector (TSV) format along
with the expected headers for the tuples and triplets
extracted specified in order to obtain results with
higher accuracy.

Upon exploration and evaluation of RE by look-
ing at token-level annotation, phase level annota-

tion and end-to-end relation extraction by Agrawal
et al., it was found that it is difficult to guide LLMs
to match exact schema (Agrawal et al., 2022).
Moreover, it was discovered that there was bias
in the results where the LLM was outputting a
non-trivial answer even when none existed. This
paper further highlighted the importance of craft-
ing prompts for IE tasks to avoid such issues by,
for example chaining multiple prompts and using
an output structure such as sequence tagging. Find-
ings from this influences our research greatly with
relation to including more complexity and speci-
ficity when undertaking prompt engineering.

With various LLMs explored for exact word
matching for joint NER and RE tasks, performance
was shown to be negatively affected when the
LLMs slightly change the phrasing or notion of the
output when extracting entities and relations due to
the ambiguity of the real-world IE tasks. Some of
the solutions proposed to correct this issue include
performing manual scoring of the results to assess
correctedness of core information by looking at
entity normalisation, error correction and multiple
plausible annotations (Dagdelen et al., 2024).

According to Goel et al., it is clear that LLMs
can significantly accelerate IE, with baseline accu-
racy compared to a trained NLP annotator (Goel
et al., 2023). It was discovered that there was supe-
rior recall at the expense of precision when utilis-
ing LLMs. These results were stated to be mainly
due to prompt engineering with few-shot paradigm
without any parameter tuning directly. This was
shown to save time and cost as it resulted in gener-
ating human expert-level annotations.

Based on the above, it can be observed that there
has been a lack of a comprehensive investigation of
the effectiveness of the prompt structure on an end-
to-end IE process for genetic information extrac-
tion – particularly across NER, RE, and NER+RE –
which was explored in this paper.

4.3 Biomedical literature and datasets
There exist limited datasets to test IE tasks in the
biomedical domain. Some of the available datasets
include GENIA (Kim et al., 2003), TBGA (March-
esin and Silvello, 2022), and UniProt (Bairoch
and Apweiler, 1997), where data has been curated
from English language literature. The lack of re-
sources in the biomedical domain can be attributed
to high level of expertise required for detailed an-
notation, lack of publicly available datasets, and
restrictions on the usage of some existing datasets



with LLMs. For example, A Agrawal et al. (2022)
utilise a dataset which was a modification of the
English-language annotated CASI dataset (Moon
et al., 2014) as it is publicly available to support
NLP tasks. It is also worth noting the costliness in
the curation of databases by experts in the biomed-
ical field contributing to the lack of research in
RE (Marchesin and Silvello, 2022). This leads
to annotated corpora being limited in size, which
prevents models from scaling effectively to large
amounts of data (Elangovan et al., 2022). It was
also found that general purpose LLMs find it dif-
ficult to provide good results for domain-specific
extraction of information with datasets containing
limited information (Park et al., 2023). It can be
observed that in an already resource poor domain
for IE, finding a publicly available dataset to sup-
port NLP research across languages in the biomed-
ical domain is difficult. While there exists limited
datasets trained on models to encourage multilin-
gual IE, there is room to explore whether general-
domain generative LLMs could be utilised to create
robust datasets to improve IE tasks (Carrino et al.,
2022).

4.4 IE tasks on non-English literature

It is worth noting that information from literature
conducted in non-English domains has the poten-
tial to provide a diverse perspective to the biomed-
ical knowledge built using English-language only
datasets and aid in advancements in medical re-
search (Rezaeian, 2015; AlShuweihi et al., 2020).
The effectiveness of generative LLMs on the ex-
traction of genetic information in a cross-linguistic
setting using a Spanish-language dataset showed
that on average English-language prompts provide
higher performance agnostic of the language of
the dataset (Kodikara and Verspoor, 2024). This
was attributed to the fact that LLMs were predomi-
nantly trained on English-language data. In order
to move towards creating solutions for non-English
language literature, our research included an inves-
tigation of the limitations of NER using Spanish
language scientific literature in GenoVarDis.

5 Conclusion

We explored the use of a generative LLM for end-
to-end genetic information extraction across several
tasks and datasets. We additionally explored lim-
itations of using a generative model by analysing
hallucinated instances generated for each IE task.

Through our evaluation of prompting strategies
we show that few-shot prompting provides opti-
mal performance for tasks involving named entity
recognition. We further show that there is minimal
effect of learning paradigms for identification of
relations between genetic entities.

Key limitations of a generative model include
over-generation and fabrication of entities demon-
strating that generative models struggle to adhere
to the task outlined in the instructions.

Further research needs to be conducted to ex-
plore ways in which performance can be further im-
proved along with minimising the negative impacts
of using generative models for IE in the biomedical
domain before using them practically.
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A Appendix

A.1 Example Spanish prompt for NER
"Encuentre las entidades en el siguiente
texto en español. La cantidad de enti-
dades encontradas debe coincidir con la
cantidad de veces que se menciona la
entidad en el texto."

A.2 Example guideline for NER
"An entity is a variant on DNA sequence
(‘DNAMutation’), RS number (‘SNP’),
COSMIC mutation (‘SNP’), Allele on
DNA sequence (‘DNAAllele’), wild
type and mutations (‘NucleotideChange-
BaseChange’), variant entities with in-
sufficient information (‘OtherMutation’),
gene (‘Gene’), disease entities (‘Dis-
ease’) or Transcript ID (‘Transcript’)."

A.3 Example expected output format for RE
"Display results in the tsv format with the
column headers ‘Gene’, ‘Disease’, ‘Re-
lation’ to annotate the entities. Provide
each triplet in a new line."

A.4 Further analysis of results

Figure A1: Instances for varying number of shots for
GenoVarDis (NER)

Figure A2: Instances for varying number of shots for
TBGA (RE)

Figure A3: Instances for varying number of shots for
Variome (NER+RE)

Figure A4: Hallucinations by type for varying number
of shots for GenoVarDis (NER)



Figure A5: Hallucinations by type for varying number
of shots for Variome (NER+RE)

Figure A6: Hallucinations by entity type for varying
number of shots for TBGA (RE)

Figure A7: Hallucinations by relation type for varying
number of shots for TBGA (RE)

Figure A8: Hallucinations by entity type for varying
number of shots for Variome (NER+RE)

Figure A9: Hallucinations by relation type for varying
number of shots for Variome (NER+RE)

Figure A10: Extracted entity types for varying number
of shots for GenoVarDis (NER)



Figure A11: Entity division for varying number of shots
for GenoVarDis (NER) grouped by prompt language

Figure A12: Entity and relation division for varying
number of shots for TBGA (RE)

Figure A13: Extracted entity types for varying number
of shots for TBGA (RE)

Figure A14: Extracted relation types for varying number
of shots for TBGA (RE)

Figure A15: Entity and relation division for varying
number of shots for Variome (NER+RE)

Figure A16: Extracted relation types for varying number
of shots for Variome (NER+RE)



Table A1: Dataset annotation schema

Dataset Annotation type Label Description

GenoVarDis

Entity DNAAllele Allele on DNA sequence

Entity DNAMutation Variant on DNA sequence

Entity Disease Disease

Entity Gene Gene

Entity NucleotideChange-BaseChange Wild type and mutant

Entity OtherMutation Variant with insufficient information

Entity SNP RS number, COSMIC mutation

Entity Transcript Transcript

TBGA

Entity Disease Disease

Entity Gene Gene

Relation biomarker Gene is a biomarker for the disease

Relation genomic _alterations Genomic alteration is linked to the gene associated
with the disease phenotype

Relation therapeutic Drug associated with disease

Relation NA False association

Variome

Entity characteristic Characteristic of disease or tumour

Entity age Number or range indicating how old a person/group
of people is

Entity body-part An organ or anatomical location in a person

Entity cohort-patient patient - Individual with a disease; cohort - A group
of people

Entity disease An abnormal condition affecting the body of an
organism.

Entity ethnicity Where a person/group of people comes from, either
based on ethnic origin or where they live

Entity gender Terms indicating whether someone is male or female

Entity gene Segment of DNA that codes for a protein

Entity mutation Alteration of nucleotides or amino acids

Entity size Number of people in a cohort, or mutation frequency

Relation has X–has–Y

Relation relatedTo X–relatedTo–Y

Label descriptions taken directly from the associated papers.



Table A2: Breakdown of dataset entity and relation types

Dataset Label Training set count Test set count

GenoVarDis

DNAAllele 139 15

DNAMutation 496 73

Disease 4028 1433

Gene 3093 514

NucleotideChange-BaseChange 51 1

OtherMutation 271 271

SNP 120 120

Transcript 1 1

TBGA

Disease 178264 20516

Gene 178264 20516

biomarker 20145 2315

genomic _alterations 32831 2209

therapeutic 3139 384

NA 122149 15608

Variome

characteristic 136 1363

age 10 79

body-part 37 454

cohort-patient 133 2016

disease 237 2137

ethnicity 7 38

gender 2 78

gene 15 825

mutation 81 945

size 52 655

has 293 3714

relatedTo 62 581
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