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Abstract

We propose a novel approach to enhancing the
performance and efficiency of large language
models (LLMs) by combining domain prompt
routing with domain-specialized models. We
introduce a system that utilizes a BERT-based
router to direct incoming prompts to the most
appropriate domain expert model. These ex-
pert models are specifically tuned for domains
such as health, mathematics and science. Our
research demonstrates that this approach can
significantly outperform general-purpose mod-
els of comparable size, leading to a superior
performance-to-cost ratio across various bench-
marks. The implications of this study suggest a
potential shift in LLM development and deploy-
ment. Rather than focusing solely on creating
increasingly large, general-purpose models, the
future of AI may lie in developing ecosystems
of smaller, highly specialized models coupled
with sophisticated routing systems. This ap-
proach could lead to more efficient resource
utilization, reduced computational costs, and
superior overall performance.

1 Introduction

Domain-specific models have demonstrated en-
couraging performance across various fields, of-
ten surpassing state-of-the-art general models in
their respective domains. In mathematics, mod-
els like Qwen 2 72B Math (Yang et al., 2024) and
DeepSeek Math (Shao et al., 2024) have shown su-
perior performance, while in code generation, spe-
cialized models such as Code Llama and CodeMis-
tral exhibit significant improvements over compara-
ble general-purpose models (AI, 2024). Also, Zhao
et al. (2024) found that models with fewer than
8 billion parameters, when fine-tuned for specific
tasks, can rival or even outperform larger models
like GPT-4 in certain domains.

Despite the promise of domain-specific AI mod-
els, a significant gap exists in integrating these spe-
cialized models into a comprehensive and versatile

Figure 1: MoDEM architecture diagram

framework. The AI community faces a crucial chal-
lenge: how to harness the power of domain-specific
models across diverse tasks without sacrificing the
versatility of general-purpose models.

We propose MoDEM (Mixture of Domain Ex-
pert Models) to address this. At its core, MoDEM
consists of two main components: a router and a
collection of domain-specific expert models (Fig-
ure 1). The router is designed to classify incoming
prompts or queries, determining which domain they
best fit into. Once classified, the prompt is then
directed to the expert model specialized in that par-
ticular domain. This approach allows us to harness
the superior performance of domain-specific mod-
els while maintaining the ability to handle a wide
range of tasks. By leveraging smaller specialized
models, we achieve state-of-the-art results in vari-
ous domains without the computational overhead
of larger general-purpose models. This approach
dramatically lowers inference costs, as only the
relevant expert model is activated for each query.
The result is a highly efficient system that deliv-
ers strong performance while minimizing resource
utilization.

MoDEM key advantage lies in its ability to train
and integrate models separately, offering signifi-
cant benefits in development efficiency and system



capabilities. This approach allows for independent
optimization of domain experts, facilitates parallel
development, and enables easy integration of new
models. The modular design ultimately allows for
customization across various industries and appli-
cations.

To summarise, our main contributions are:

• We propose an architecture for creating a
lightweight router system that effectively di-
rects prompts to domain-specific expert mod-
els.

• We demonstrate that domain-based routing
to specialized experts can produce state-of-
the-art results with significant inference cost
reduction.

2 Related Work

Mixture of Experts (MoE) is a machine learning
technique that combines multiple specialized mod-
els or "experts" to solve complex tasks. In the
context of language models, MoE approaches have
been explored to enhance both performance and
efficiency. There are primarily two categories of
MoE implementations in current research:

2.1 Integrated MoE Architectures
Sparse Mixture of Experts (MoE) transformers is
first introduced by Shazeer et al. (2017) and further
developed in models such as GShard (Lepikhin
et al., 2020) and Switch Transformers (Fedus et al.,
2022), which integrate expert modules within a
single model architecture. These methods use a
gating mechanism to dynamically route tokens or
layers to different expert sub-networks during train-
ing and inference, significantly improving model
efficiency by activating only a subset of experts.
However, these approaches encounter challenges
such as training instability, architectural complex-
ity, and load balancing issues (Li et al., 2024).

2.2 Multi-Model Routing Systems
Recent research has explored systems that leverage
multiple distinct language models rather than sub-
networks within a single architecture. For example,
HuggingGPT (Shen et al., 2023) breaks tasks into
subtasks and routes them to different specialized
models. Another approach, RouteLLM (Ong et al.,
2024), aims to optimize the cost-performance trade-
off by selecting between two pre-trained models for
different tasks. MoDEM is different to Hugging-
GPT and RouteLLM in that our approach routes

questions into domains such as mathematics or
health; this is a contrast to HuggingGPT where
it routes based on tasks (e.g. OCR) or RouteLLM
which attempts to directly predict different models
performances in order to attempt to route to the
best model.

3 Methodology

3.1 Benchmarks
We use the following evaluation benchmarks to
measure the performance of MoDEM: MMLU,
MMLU Pro, HumanEval, College Math, Math,
GSM8k, and Olympiad Bench. These benchmarks
were chosen to provide a balanced distribution of
domain-specific and general tasks, ensuring a com-
prehensive evaluation across diverse areas of ex-
pertise. Benchmark sizes below refer to test set
size

MMLU (Hendrycks et al., 2021b) (Massive
Multitask Language Understanding) is a general-
purpose benchmark consisting on 14k questions
designed to test a model’s proficiency across 57
subjects, including STEM, humanities, social sci-
ences, and more. The questions are in multiple-
choice format, covering a broad range of domains
to evaluate the model’s versatility.

MMLU Pro (Wang et al., 2024) is an extension
of MMLU containing 12k questions that focuses on
more advanced topics and professional-level knowl-
edgeg. It uses multiple-choice questions similar to
MMLU, but with more specialized and higher-level
content.

GPQA (Rein et al., 2023) is designed to evaluate
models on advanced topics and professional-level
knowledge across a wide array of science domains.
It contains 448 questions

HumanEval (Chen et al., 2021b) assesses code
generation capabilities by providing programming
problems that the model must solve. It’s 134 ques-
tions focuses on domain-specific knowledge within
the programming domain, using open-ended cod-
ing tasks that require the model to generate func-
tioning code.

College Math (Liu et al., 2024) evaluates
a model’s understanding of undergraduate-level
mathematics on open ended problems, covering
topics such as calculus, linear algebra, and proba-
bility.

MATH (Liu et al., 2024) is a more general
benchmark containing 1.2k questions that covers
a wide range of math topics at varying levels, in-



cluding elementary arithmetic, algebra, and more
complex problem-solving tasks.

GSM8k (Cobbe et al., 2021a) (Grade School
Math 8k) is a benchmark containing 1.3k questions
that evaluates mathematical reasoning skills on
open ended problems, specifically targeting grade-
school level word problems.

Olympiad Bench (He et al., 2024) includes 2.3k
challenging open ended math and science problems
typically found in international Olympiad competi-
tions.

Of these benchmarks, MMLU, MMLU Pro and
GPQA rely on multiple-choice questions (MCQ)
to evaluate the model’s proficiency across vari-
ous domains, including general knowledge and
professional-level topics. In contrast, HumanEval,
College Math, Math, GSM8k, and Olympiad
Bench focus on open-ended questions.

3.2 Router
We now describe the router, a key component used
for directing incoming queries to the most appro-
priate domain-specific expert model.

3.2.1 Router Architecture
We used Microsoft DeBERTa-v3-large (He et al.,
2023), a 304 million parameter model, and fine-
tuned it for our specific routing task. The model
was fine-tuned to predict the domain of the input
prompt (e.g., Math). We chose DeBERTa-v3-large
due to its successful application in classification
tasks. With our largest expert models containing
up to 73B parameters, the router represents only
about 0.42% of the largest expert’s size. This ratio
ensures that we’re not spending disproportionate
computational resources on routing.

3.2.2 Domain Selection
The domains selected for our study were the fol-
lowing: Math, Health, Science, Coding and Other.
Other represented domains outside of the selected
domains. These domains were chosen based on
the availability of high-quality specialized models
that consistently outperform general-purpose mod-
els. They also represent a diverse range of tasks
and have significant real-world applications, ensur-
ing that the routing system demonstrates versatility
across various areas.

3.2.3 Training Data
For the router, we curated a set of diverse and
comprehensive training data covering multiple do-
mains; full list of datasets for each domain is given

in Table 1. Our focus was on selecting datasets that
capture a broad range of tasks, and complexities
within each domain to ensure thorough represen-
tation and variety. This approach ensures that our
router is exposed to a variety of query formulations
and problem types, enhancing its ability to accu-
rately classify and route a broad range of real-world
queries. We also use data from the benchmarks,
specifically Math, GPQA, GSM8k and HumanEval
(Section 3.1), but only from their training partition.
Note that we do not use any data from MMLU or
MMLU Pro.

To ensure balanced representation across differ-
ent domains, we implemented a data pruning proto-
col. A maximum threshold of 30,000 instances per
dataset in each domain was applied to Math, Health,
and Science while Other and Coding was allowed
up to 100,000 entries per dataset. This decision was
made because some datasets contained repetitive
data, whereas the coding and other benchmarks fea-
tured more diverse and varied datasets. We down-
sampled some coding datasets because they are
over represented in the training set. This method-
ology aimed to create a comprehensive training
corpus that prevents any single source from domi-
nating the learning process, thereby optimizing the
model’s ability to generalize across diverse tasks
and knowledge domains. Table 2 outlines total
number of training instances in each domain.

To further enhance the diversity and coverage
of our dataset, we employed synthetic data gen-
eration using the Llama 3.1 405B model (Dubey
et al., 2024) . This step was crucial in addressing
a significant gap we identified in existing datasets:
a scarcity of casual, conversational questions that
were clearly classified by domain. We found that
while many datasets provided structured, formal
queries, they lacked the natural language and var-
ied scenarios typical of real-world interactions. We
first created a hand-crafted dataset of 100 examples
of conversation-style questions for each domain.1

We selected a wide array of question content within
each domain. We then prompted Llama 405B to
generate 100 questions for each hand-crafted exam-
ples, resulting in a total of 10,000 synthetic exam-
ples for each domain.2 We found that incorporat-
ing hand-crafted examples into the model not only

1By “conversation-style”, we refer to questions that simu-
late a more natural, interactive dialogue, as opposed to tradi-
tional fact-based or direct question-answer formats.

2Temperature set to 1.0 to ensure more diverse dataset
(Jean Kaddour).



produced outputs closely aligned with our desired
question format but also introduced a greater diver-
sity of questions. When rerunning the same prompt
without these hand-selected examples, the model
would often generate similar outputs, lacking vari-
ety.

Here are some examples of the handcrafted
dataset:

• Math: "I’m out with 4 friends and our total
bill is $137.50. We want to leave a 15% tip.
How much should each person pay if we split
it evenly?"

• Health: "I’ve had this annoying sore throat
for about 4 days now. It’s not super painful,
but it’s definitely there, especially when I swal-
low."

• Science: "Can you explain how microwaves
work?"

Given the training data (data in Table 1 and the
synthetic data) for each domain, we fine-tuned De-
BERTa to classify the domain given an input in-
stance. The fine-tuning was performed with a con-
figuration of 1 epoch, a batch size of 32, and a
learning rate of 1e-5. The model was trained on an
A100 GPU for 1 epoch.

3.3 Experts
3.3.1 Expert Selection
Our research use a combination of domain-specific
and general-purpose models to create a system of
expert agents. The selection of these models was
primarily based on the availability of high-quality,
open-source options that demonstrated superior per-
formance in their respective domains. We utilized
two sets of models: a “medium” set with larger
parameter counts, and a “small” set with more com-
pact models.

Medium Model Set (≤73B parameters)
The following models were chosen as the experts
for our medium model:

• Health: Palmyra-health-70B (Writer, 2024)

• Math: Qwen2.5-72B-Math-Instruct (Yang
et al., 2024)

• Science: Qwen2.5-72B-Instruct (Yang et al.,
2024)

Domain Datasets

Math TIGER-Lab/MathInstruct
lighteval/MATH
allenai/math_qa
openai/gsm8k
camel-ai/math
meta-math/MetaMathQA
deepmind/math_dataset/algebra__linear_1d
deepmind/math_dataset/algebra__polynomial_roots
deepmind/aqua_rat
AI4Math/MathVerse

Health nlpaueb/biomrc
iari/HumGen_Clinical_Notes
medmcqa
lavita/ChatDoctor-HealthCareMagic-100k

Science bigbio/pubmed_qa
derek-thomas/ScienceQA
allenai/sciq
bigscience/P3
ai2_arc
nlpaueb/biomrc
allenai/scitldr
tdiggelm/climate_fever
medmcqa
Idavidrein/gpqa
allenai/scifact
allenai/scirepeval

Coding codeparrot/apps
bigcode/the-stack
nuprl/MultiPL-E
code_x_glue_ct_code_to_text
deepmind/code_contests
huggingface/codecompetitions
openai/openai_humaneval
bigcode/humanevalpack
defect_prediction
google/code_x_glue_ct_code_to_text
google-research-datasets/mbpp

Other bigscience/P3
wiki_qa
Anthropic/persuasion
huggingface/cnn_dailymail
allenai/qasper
openai/summarize_from_feedback
Salesforce/wikitext
Anthropic/llm_global_opinions
google-research-datasets/wiki_split
google-research-datasets/aquamuse

Table 1: Datasets used for training router. Full citations
can be found in Appendix A.

Domain Number of Entries

Health 100,000
Math 113,611
Science 224,885
Coding 572,636
Other 700,000

Table 2: Final data distribution across domains from
datasets



• Coding: Qwen2.5-72B-Instruct (Yang et al.,
2024)

• Other: Meta-Llama-3.1-70B-Instruct (Dubey
et al., 2024)

Small MoDEM Model Set (≤8B parameters)
We also explored a set of smaller models, each with
less than 8B parameters:

• Health: Meta-Llama-3.1-8B-Instruct (Dubey
et al., 2024)

• Math: Qwen2.5-Math-7B-Instruct (Yang
et al., 2024)

• Science: Qwen2.5-7B-Instruct (Yang et al.,
2024)

• Coding: Qwen2.5-Coder-7B (Hui et al.,
2024)

• Other: Meta-Llama-3.1-8B-Instruct (Dubey
et al., 2024)

The selection of models was based on evaluating
across different domains, where we chose the best-
performing models for each domain. In almost all
cases, we found that modern models specialized
in a specific domain significantly outperformed
general-purpose models of the same size (Yang
et al., 2024). For instance, the Palmyra models ex-
celled in health (Writer, 2024), while the Qwen2.5-
Math model proved to be the most effective for
mathematical tasks (Yang et al., 2024).

In cases where domain-specific models were not
available, we defaulted to strong general-purpose
models to maintain consistency across the system.
Models like Meta-Llama-3.1 served as reliable
baselines, ensuring good performance even in the
absence of specialized options.

3.4 Prompting
We use zero-shot prompting with chain of thought
(Wei et al., 2023) to prompt each expert to answer
questions in the benchmarks (Section 3.1).3 Full
prompts can be found in appendix B

Category Accuracy

Health 81.18%
Math 96.63%
Science 83.02%
Coding 77.42%
Other 52.94%

Overall 81.00%

Table 3: Router Classification Results on MMLU.

4 Results

4.1 Router Performance
We evaluated our router on the test set of the
datasets used for training, and it achieved an aver-
age accuracy of 97%, illustrating its high reliabil-
ity in routing queries for tasks similar to those it
was fine-tuned on. We next assessed the router’s
performance on the MMLU to test its ability to
generalize to out-of-distribution data. We manu-
ally mapped the MMLU domains into our chosen
domains.4 Table 3 presents the results. We gen-
erally see strong performance for the specialised
domains, although for “Other” the performance is
a little lower. The latter observation is perhaps
not too surprising, it’s a “catch all” domain that
doesn’t have a concrete definition and so it’s diffi-
cult to have training data that captures the full data
distribution. Overall these results suggest that the
router generalises well and is sufficiently reliable
as a domain router.

We manually assessed some of the error cases
and found that some mis-classifications are due to
domain-ambiguity. To give an example:

• Example "A burial site where the body is
allowed to decompose naturally without a cas-
ket is called a ____ cemetery."
True Domain: Health, Predicted: Other

4.2 MoDEM Performance
We present the full results in Table 4 and 5 for
medium and small MoDEM respectively. For base-
line comparisons, we used the Llama 3.1 instruct
models, which are generally considered SoTA for

3We use the following prompt: Solve the following prob-
lem step by step, explaining each step clearly to ensure the
reasoning process is well-justified. For multiple-choice ques-
tions, we have an additional sentence appended to the previous
prompt: Clearly state which multiple choice option you pick.

4Recall that MMLU was not used in the training data for
the router.



Domain Benchmark Llama 3.1 70B Medium (<73B) Improvement

Multi-domain MMLU 86.0% 87.7% +1.7%
MMLU Pro 58.0% 63.4% +5.4%

Coding HumanEval 80.5%* 86.5%* +6.0%
Science GPQA 46.1% 48.4% +2.3%
Math College Math 42.5%* 49.5%* +7.0%

MATH 65.7%* 85.9%* +20.2%
GSM8k 94.1%* 95.9%* +1.8%
Olympiad Bench 27.7%* 49.0%* +21.3%

Table 4: Comparison of Llama 3.1 70B vs. medium MoDEM (≤73B) on various benchmarks. An asterisk (*)
indicates numbers sourced from another paper. See Section 4.2 for further explanation.

Domain Benchmark Llama 8B Small (<8B) Improvement

Multi-domain MMLU 73.0% 76.2% +3.2%
MMLU Pro 40.4% 46.5% +6.1%

Coding HumanEval 72.6%* 88.4%* +15.8%
Science GPQA 32.6% 35.0% +2.4%
Math College Math 33.8%* 46.8%* +13.0%

MATH 47.2%* 83.6%* +36.4%
GSM8k 76.6%* 95.2%* +18.6%
Olympiad Bench 15.4%* 41.6%* +26.2%

Table 5: Comparison of Llama 8B vs. small MoDEM (≤8B) on various benchmarks. An asterisk (*) indicates
numbers sourced from another paper. See Section 4.2 for further explanation.

open source models. In instances where the same
prompting techniques (zero-shot with Chain of
Thought) were employed, we use reported out-
comes (denoted by an asterisk in the tables) due
to computational limitations and challenges associ-
ated with evaluating certain benchmarks (e.g. the
test set is not open-source).5 Concretely, we ran the
MMLU, MMLU-Pro and GPQA benchmark results
ourselves for the baseline. But for all other bench-
marks (HumanEval, College Math, Math, GSM8k
and Olympiad Bench) we sourced the results from
the Qwen-2.5 Technical Report (Yang et al., 2024)
and the Llama 3.1 Technical Report (Dubey et al.,
2024).

MoDEM demonstrate consistent performance
gain across all evaluated benchmarks when com-
pared to their respective baselines. This consis-
tent improvement highlights the effectiveness of
our domain-specialized models and the strength
of the routing system in accurately selecting the
appropriate expert for each task. For the math do-
main in particular, MoDEM delivered substantial

5For these benchmarks, we found in practice over 98% of
the prompts were routed to a single model (e.g. 98.4% of Math
benchmark was routed to our math expert) and so the results
would be reasonably close to those we would obtain if we ran
them ourselves.

improvements. The performance gains in these ar-
eas show the clear advantage of domain-specific
training and highlight the effectiveness of our ap-
proach to model specialization. In tasks involving
multi-domain knowledge and reasoning (MMLU
and MMLU-Pro), both small and medium MoDEM
still show improvement over the baseline, demon-
strating MoDEM is versatile across different do-
mains.

4.3 Cost and Efficiency Analysis
To evaluate the efficiency of our model, we com-
pared its performance and inference costs with
other leading models. All costs are based on To-
gether AI (TogetherAI, 2024) figures where possi-
ble. For models not publicly hosted we based price
off models of similar size. At the time of publishing
the Qwen 2.5 models were not publicly hosted so
we defaulted to the Qwen 2 prices. Palmyra-Health
was also not hosted on TogetherAi so we use the
price of the Writer API. For our router cost we as-
sumed pricing based off other Bert based models
of similar size being hosted. We assumed $0.03
per million tokens for the router cost. The reported
cost for our models were based off the average over
the MMLU dataset. Prices may vary slightly de-
pending on dataset due to different experts models



Model MMLU Accuracy (%) Parameters Input Tokens ($/million tokens)

Llama 3.1 405B 88.6 405B 5.00
Medium MoDEM 87.7 <73B 0.92
Qwen 2.5-72B 86.1 72B 0.9
Llama 3.1 70B 86.0 70B 0.88
Mixtral-8x22B 77.5 8x22B 1.20

Table 6: Comparison of medium MoDEM vs. leading models in terms of estimated inference cost.

Model MMLU Accuracy (%) Parameters Input Tokens ($/million tokens)

Llama 3.1 70B 86.0 70B 0.88
Small MoDEM 76.2 <8B 0.22
Llama 3.1 8B 73.0 8B 0.18
Mixtral-8x7B Instruct 70.6 8x7B 0.60
Gemma2-9B 69.2 9B 0.30
Mistral-7B 62.5 7B 0.20

Table 7: Comparison of small MoDEM vs. leading models in terms of estimated inference cost.

having different inference costs.
MMLU results are in Table 6 and 7 for medium

and small MoDEM respectively. Our models
demonstrate a superior price-to-performance ratio
compared to the leading models. Both medium and
small MoDEM deliver higher accuracies across
benchmarks while maintaining competitive or
lower inference costs, showcasing significant im-
provements in cost-effectiveness. For small Mo-
DEM in particular, we see that it has a much bet-
ter performance compared to similar sized models.
For medium MoDEM, its performance is close to
a much larger model (Llama 405B), even though
it is 5-6 times smaller and cheaper. Together these
results illustrate the scalability and effectiveness of
our approach across a range of model sizes.

5 Discussion

The results of our study on mixture of experts with
domain-specific routing suggest a potential shift
in the development and deployment of large lan-
guage models (LLMs). This section explores the
implications of our findings, their broader impact
on the field of artificial intelligence, and potential
directions for future research.

5.1 Potential Shift in Model Development
Our research demonstrates that combining domain
routing with models fine-tuned for specific domains
can significantly outperform base models of the
same size, leading to a more favorable performance-

to-cost ratio. This challenges the current trend
of developing increasingly large, general-purpose
models and instead points towards a future where
AI systems consist of an ecosystem of smaller,
highly specialized models coupled with intelligent
routing mechanisms.

This shift parallels how human expertise is orga-
nized in society, where specialists in various fields
collaborate to solve complex problems. In the con-
text of AI, this approach could result in:

• More efficient resource utilization

• Reduced computational costs

• Superior performance in domain-specific
tasks

• Increased interpretability and control over
model outputs

As compute bottlenecks continue to constrain the
development of ever-larger models, the transition
towards domain-specific models may become nec-
essary to sustain progress in LLM capabilities and
performance. By optimizing resources and leverag-
ing domain expertise, this approach holds promise
for maintaining the current rate of advancements
in the field.

Our approach holds significant potential for fu-
ture improvement. As the AI community develops
more specialized, high-performance models, we



anticipate substantial increases in the overall ca-
pabilities of our system. The current performance
represents a lower bound of what’s achievable, and
as specialized models trained on domain-specific
data emerge, it will benefit our mixture of experts
routing approach.

We want to also highlight that MoDEM’s do-
main set is adaptable. As new specialized models
in fields like legal or environmental science become
available, they can be easily integrated by updating
the router and adding relevant expert models. Ex-
isting domains can also be refined or consolidated
based on performance analysis, ensuring contin-
ued efficiency. Additionally, hierarchical domain
structures, such as broad categories with more spe-
cific sub-domains, could further enhance routing
precision. This adaptable approach ensures our
system evolves with AI developments, providing
a scalable framework for continuous improvement
aligned with real-world needs.

5.2 Implications for AI Deployment
Our findings reveal that domain-specific models
with fewer parameters can match or outperform
larger general-purpose models like Llama 405B,
carrying important implications for AI deployment.
This approach delivers state-of-the-art performance
at a fraction of the inference cost, drastically re-
ducing computational overhead while maintaining
high-quality results. It opens opportunities for cost-
effective AI deployment, particularly in resource-
constrained settings where large models are imprac-
tical.

5.3 Future Research Directions
Our findings highlight several promising research
directions using mixture of experts. Key challenges
include developing better routing techniques, such
as improving domain selection accuracy and scal-
ing to more domains. Expanding domain-specific
models to cover a wider range of tasks will also in-
crease the system’s applicability across industries.
Cross-domain integration and dynamic model se-
lection could enhance handling of complex queries
by combining outputs from multiple experts in real
time. Additionally, introducing difficulty-based
routing within each domain could optimize re-
source use, directing simpler queries to smaller
models and complex ones to larger models, im-
proving cost-effectiveness and performance.

6 Conclusion

This study demonstrates the effectiveness of com-
bining domain-specific expert models with routing
to enhance the performance and efficiency of large
language models. Our approach consistently out-
performed baseline models across various bench-
marks, with strong improvement in specialized do-
mains such as mathematics. Both our small and
medium MoDEM achieved superior performance-
to-cost ratios compared to larger, general-purpose
models, highlighting the potential for significant
efficiency gains in AI deployment.

This research demonstrates a promising new di-
rection in the field of artificial intelligence: the com-
bination of domain-specific models with intelligent
routing systems. The study’s findings suggest that
this approach can lead to significant improvements
in both performance and cost-efficiency compared
to traditional large language models. These find-
ings point to a potential shift in AI development
and deployment. Rather than focusing solely on
creating increasingly large general-purpose mod-
els, the future may lie in developing ecosystems
of smaller, highly specialized models coupled with
sophisticated routing systems. This approach could
lead to more efficient resource utilization, reduced
computational costs, and superior performance in
domain-specific tasks.

Limitations

It’s important to note that our selection was con-
strained by the current landscape of available open-
source, domain-specific models. The field of AI is
rapidly evolving, and the development of special-
ized models is a relatively recent trend. As such,
our study represents an initial exploration into the
potential of combining domain experts with intelli-
gent routing.

Additionally, we were somewhat limited by the
lack of public APIs for certain models, making it
challenging to run direct benchmarks. This con-
straint forced us to rely on benchmarks reported in
other studies, which may not have fully captured
the performance nuances in our specific use case.
As more models become accessible and standard-
ized benchmarking tools evolve, future iterations
of our research will likely benefit from more com-
prehensive and direct performance evaluations.
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Appendix A: Dataset Citations

Below is a list of citations for the datasets used in
our study, organized by domain:

• Math

– TIGER-Lab/MathInstruct: (Yue et al.,
2023a)

– lighteval/MATH: (Yue et al., 2023b)
– allenai/math_qa: (Amini et al., 2019)
– openai/gsm8k: (Cobbe et al., 2021b)
– camel-ai/math: (Li et al., 2023)
– meta-math/MetaMathQA: (Yu et al.,

2023)
– deepmind/math_dataset/algebra__linear_1d:

(Saxton et al., 2019)
– deepmind/math_dataset/algebra__polynomial_roots:

(Saxton et al., 2019)
– deepmind/aqua_rat: (Ling et al., 2017)
– AI4Math/MathVerse: (Zhang et al.,

2024)

• Health

– nlpaueb/biomrc: (Pappas et al., 2020)
– iari/HumGen_Clinical_Notes:

augmented-clinical notes
– medmcqa: (Pal et al., 2022)
– lavita/ChatDoctor-HealthCareMagic-

100k: https://huggingface.
co/datasets/lavita/
ChatDoctor-HealthCareMagic-100k
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• Science

– bigbio/pubmed_qa: (Jin et al., 2019)
– derek-thomas/ScienceQA: (Lu et al.,

2022)
– allenai/sciq: (Johannes Welbl, 2017)
– bigscience/P3: (Sanh et al., 2021)
– ai2_arc: (Clark et al., 2018)
– nlpaueb/biomrc: (Pappas et al., 2020)
– allenai/scitldr: (Cachola et al., 2020)
– tdiggelm/climate_fever: (Diggelmann

et al., 2020)
– medmcqa: (Pal et al., 2022)
– Idavidrein/gpqa: (Rein et al., 2023)
– allenai/scifact: (Wadden et al., 2020)
– allenai/scirepeval: (Wadden et al., 2020)

• Coding

– codeparrot/apps: (Hendrycks et al.,
2021a)

– bigcode/the-stack: (Kocetkov et al.,
2022)

– nuprl/MultiPL-E: (Cassano et al., 2024)
– code_x_glue_ct_code_to_text: (Husain

et al., 2019)
– deepmind/code_contests: (Li et al.,

2022)
– huggingface/codecompetitions: (Li et al.,

2022)
– openai/openai_humaneval: (Chen et al.,

2021a)
– bigcode/humanevalpack: (Muennighoff

et al., 2023)
– defect_prediction: (Zhou et al., 2019)
– google/code_x_glue_ct_code_to_text:

(Husain et al., 2019)
– google-research-datasets/mbpp: (Austin

et al., 2021)

• Other

– bigscience/P3: (Sanh et al., 2021)
– wiki_qa: (Yang et al., 2015)
– Anthropic/persuasion: (Durmus et al.,

2024)
– huggingface/cnn_dailymail: (See et al.,

2017)
– allenai/qasper: (Dasigi et al., 2021)
– openai/summarize_from_feedback: (Sti-

ennon et al., 2020)

– Salesforce/wikitext: (Merity et al., 2016)
– Anthropic/llm_global_opinions: (Dur-

mus et al., 2023)
– google-research-datasets/wiki_split:

(Botha et al., 2018)
– google-research-datasets/aquamuse:

(Kulkarni et al., 2020)

Appendix B: Prompting Techniques

For Prompting the Model
Prompt:
Solve the following problem step by step, explain-
ing each step clearly to ensure the reasoning
process is well-justified. Clearly state which
multiple choice option you pick.

Input:

{question}

For Our LLM Evaluation
Prompt: You will be given a ground truth answer
and a model answer. Please output ACCURATE if
the model answer matches the ground truth answer
or INACCURATE otherwise. Please only return
ACCURATE or INACCURATE. It is very important
for my job that you do this.

Input Format:

<GroundTruthAnswer>
{correctAnswer}
</GroundTruthAnswer>

<ModelAnswer>
{predictedAnswer}
</ModelAnswer>
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