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Abstract

Identifying self-disclosed health diagnoses in
social media data using regular expressions (e.g.
"I’ve been diagnosed with <Disease X>") is a
well-established approach for creating ad hoc
cohorts of individuals with specific health con-
ditions. However there is evidence to suggest
that this method of identifying individuals is
unreliable when creating cohorts for some men-
tal health and neurodegenerative conditions. In
the case of dementia, the focus of this paper,
diagnostic disclosures are frequently whimsi-
cal or sardonic, rather than indicative of an
authentic diagnosis or underlying disease state
(e.g. "I forgot my keys again. I’ve got demen-
tia!"). With this work and utilising an anno-
tated corpus of 14,025 dementia diagnostic self-
disclosure posts derived from Twitter, we lever-
aged LLMs to distinguish between "authen-
tic" dementia self-disclosures and "inauthentic"
self-disclosures. Specifically, we implemented
a genetic algorithm that evolves prompts us-
ing various state-of-the-art prompt engineer-
ing techniques, including chain of thought,
self-critique, generated knowledge, and ex-
pert prompting. Our results showed that, of
the methods tested, the evolved self-critique
prompt engineering method achieved the best
result, with an F1-score of 0.8.

1 Introduction

Longitudinal changes in linguistic abilities have
been studied to identify a relationship between lan-
guage decline and the onset of dementia (Kempler
and Goral, 2008). The Nun Study, a longitudinal
investigation into Alzheimer’s disease, examined
this relationship (Kemper et al., 2001). Kemper et
al. discovered in their study that higher linguistic
abilities in early adulthood, measured by the pro-
portion of complex sentences in writing samples,
were linked to a lower risk of developing dementia.
While longitudinal research offers valuable insights
into causal relationships, it is often challenging and
costly to collect such data (M. Leffler and Tong,

2022). Social media data has become a promising
source for creating cohorts for longitudinal studies
(Zubiaga, 2018), as data can be continuously and
passively collected from users’ interactions over ex-
tended periods. A further significant advantage of
social media data is that each post is timestamped,
making it easy to track changes over time. This
allows researchers to analyze linguistic patterns
with precise temporal context, capturing everyday
language use across various contexts. This charac-
teristic enhances the ability to study longitudinal
changes in language and its relation to conditions
such as dementia (Hrincu et al., 2022).

A key step in social media analysis, following
the collection of user data, is the annotation pro-
cess (Wongkoblap et al., 2022). Accurate anno-
tation is vital, as correctly labelling users enables
researchers to distinguish between groups and an-
alyze their differences. While methods relying
solely on pattern matching for the identification
of self-disclosure statements are straightforward
to implement, they often prove unreliable in the
context of mental health and neurodegenerative
condition due to the tendency of such disclosures
to be humorous, whimsical, or sardonic.

In this research, we leverage Large Language
Models (LLMs) to automate the annotation of so-
cial media data related to dementia self-disclosure.
LLM performance is highly dependent on the qual-
ity of the prompts guiding the model. To opti-
mize these prompts, we implemented a genetic
algorithm that evolves them using various state-of-
the-art (SOTA) prompt engineering techniques. By
monitoring the performance of these techniques,
we gained valuable insights into which methods
are most effective for this task. Our prompts were
also designed as detailed guidelines, enabling the
model to detect subtle linguistic patterns critical to
identifying authentic dementia-related disclosures.
This approach not only improves annotation ac-
curacy but also enhances interpretability, offering



researchers insights into the linguistic features of
dementia self-disclosure on social media.

2 Related Work

2.1 Manual Annotation
A traditional approach to identifying users with
health conditions involves manual annotation
(Wongkoblap et al., 2022). In this method, a dataset
is typically built by using keywords to scrape social
network platforms, followed by manually annotat-
ing the collected data (Chancellor et al., 2023). For
instance, Talbot et al. (2018) collected tweets con-
taining search terms associated with Alzheimer’s
or dementia, such as "I have dementia," to identify
users with self-reported diagnoses. While relying
solely on search terms to label users as dementia
patients is a simple way to annotate a dataset, it is
prone to noise and incorrect labeling. For instance,
the phrase "I have dementia" can appear in con-
texts that are not intended to be taken literally, such
as jokes or memes—e.g., "My doctor said I have
dementia. Well, I don’t remember asking."

Similarly, Azizi et al. (2024) and Gkotsis
et al. (2020) used the search terms "Dementia" or
"Alzheimer" to collect data from Twitter and Red-
dit. However, in both studies, the collected data
was manually filtered to remove irrelevant content
where the search terms were not used to indicate
that a person was suffering from these illnesses.
This manual filtering process helped reduce noise,
increasing the likelihood that posts genuinely re-
lated to dementia or Alzheimer’s self-disclosure
were retained for further analysis. While effective,
this method still requires substantial human effort
to ensure the accuracy of the annotations.

2.2 Automated Prompt Engineering
The performance of an LLM is tied to the quality of
prompts used to instruct them. Chain-of-Thought
(CoT) prompting encourages LLMs to incorporate
intermediate reasoning steps, breaking down com-
plex tasks into smaller, logical components (Wei
et al., 2022). Generated Knowledge (GK) prompt-
ing augments the input with relevant information,
effectively expanding the model’s contextual un-
derstanding (Liu et al., 2022). Self-critique (SC)
prompting introduces an additional layer of reflec-
tion, where the model is encouraged to assess and
critique its own output (Wang et al., 2023). Expert
prompting explicitly indicates to the LLM that it
is proficient in a particular field; e.g. an expert in

prompt engineering (Xu et al., 2023). Testing a
diverse set of prompts is crucial for optimizing
the output of an LLM, as it enables the model
to explore a broader solution space and consider
multiple approaches to a problem (Fernando et al.,
2023).

Automated prompt strategies, aimed at minimiz-
ing manual intervention in prompt design and op-
timization, have demonstrated promising results
(Cabrera Lozoya et al., 2024). In this paper, we
leveraged LLMs to generate prompt candidates.
We employed a binary tournament genetic algo-
rithm framework (Harvey, 2009), which involves
randomly selecting two prompts and replacing the
prompt with lower fitness by a mutated version of
the one with higher fitness.

3 Method

3.1 Data collection
To construct our dataset, we used the Twitter Aca-
demic API to collect tweets containing search terms
like "I have dementia," yielding a total of 14,025
tweets. The data collection took place between Oc-
tober and November 2022. For each self-disclosure
tweet, we also gathered the five posts immediately
preceding and following the self-disclosure to as-
sess their context. For the complete list of self-
disclosure terms used for the data collection, please
refer to Appendix A. Three authors of the paper
were responsible for annotating the dataset. To im-
prove inter-annotator agreement, they completed
four annotation blocks, each consisting of 1,991
tweets. A substantial inter-annotator agreement
was achieved, with a pairwise Cohen’s kappa of
0.68 (McHugh, 2012). Of the tweets collected us-
ing the search terms, less than 20% were authentic.
From the remaining data we built a balanced dataset
with a 50/50 distribution of authentic and inauthen-
tic statements by applying upsampling. The dataset
was divided into stratified training and testing sets,
following an 80/20 split. The training and testing
datasets were verified to ensure there was no cross-
contamination between them. The training dataset
was then divided into 10 stratified batches.

3.2 Genetic Algorithm
Let P represent the prediction from an LLM when
given an instruction prompt I as input, expressed as
P = LLM(I). Our genetic algorithm aims to find
an optimal instruction prompt O with the goal of
maximizing the performance of P in comparison



when I is utilized. Our algorithm mutates prompts
to optimize them. Mutations involve a mutation
prompt M and an LLM. A mutated prompt I ′ is de-
fined as I ′ = LLM(M+ I), where + denotes string
concatenation. The pool of mutation prompt types
is derived from prompt engineering techniques em-
ployed to enhance prompts for LLMs. In our ex-
periment we tested CoT, GK, SC, and Expert tech-
niques. Appendix B contains the set of starting
prompts for each type of mutation and a prompt
mutation example.

Given an initial instruction prompt to label a
tweet as originating from a user who authentically
identifies themselves as having a diagnosis of de-
mentia, our algorithm creates an initial popula-
tion of prompts by evolving the initial instruction
prompt using a set of random mutation prompts.
The mutated prompts are then used by the LLM to
make predictions on a random batch from the train-
ing dataset. Once the batch has been processed,
the accuracy that the LLM obtained using each
prompt is stored as the fitness level of that prompt.
Our algorithm maintains a record of the instruction
prompt, the mutation prompt, and the associated
fitness level that the prompt achieved when pro-
cessing a batch of tweets. Each record represents
an individual in the population.

Once the population is initialized, our evolution-
ary process unfolds in generational steps. In each
step, each individual has a mutation probability of
µm, representing the likelihood of undergoing a
mutation that alters its instruction prompt. After
selecting which individuals will mutate, our algo-
rithm then determines the type of mutation to be
acquired from four options: CoT, GK, Expert, or
SC. Upon calculating the mutated individual’s fit-
ness using a random batch from the training dataset,
it is introduced into the population. This process
continues until the maximum population cap is
reached. Once the population cap is met, individ-
uals for the next generation are selected using a
probability function weighted by each individual’s
fitness level. This ensures that fitter individuals
have a higher likelihood of advancing, while still
allowing for some diversity by giving less fit indi-
viduals a chance to survive. After N generations,
the instruction prompt from the individual with the
highest fitness is selected as the optimized prompt.
Figure 1 presents an overview of our algorithm.

3.3 Natural Language Processing Models
Our genetic algorithm was tested using Meta-
Llama-3-8B-Instruct1, with a nucleus sampling of
0.9 and a temperature of 0.6. Since the LLM can
generate diverse textual outputs to label each tweet,
we appended a formatting prompt instructing the
model to respond with a ‘yes’ or ‘no’. Subse-
quently, a BERT text classifier was utilized to cate-
gorize the LLM’s outputs. A label of 0 indicated
that the text did not come from a user who gen-
uinely disclosed themselves as having dementia,
while a label of 1 indicated the opposite, signify-
ing genuine self-disclosure of a dementia diagnosis.
This classification step ensures a standardized and
consistent output, which was needed to measure the
accuracy and F1 score of the LLM model. Refer to
Appendix C for an example of a classification.

3.4 Evaluation
To find the optimal prompt, we executed the ge-
netic algorithm with a population limit set to 10
individuals, a mutation probability µm of 50%,
and spanning a total of 20 generations. Subse-
quently, we selected the prompt with the highest
fitness level from the surviving population. The
selected prompt became the input for the LLM,
and we assessed its performance using the tweets
from the testing dataset. Our evaluation metrics in-
cluded measuring and reporting both the F1-score
and the accuracy achieved by the LLM on the test-
ing dataset. For comparison, we also trained and
tested a BERT model, using it as a baseline to
assess the performance of our algorithm against
traditional transformer-based classifiers. Details of
the BERT model’s hyperparameters are presented
in Appendix D.

4 Results and Discussion

The optimized prompt (refer to Appendix E)
achieved an accuracy of 0.8 and an F1-score of 0.8,
outperforming the BERT classifier, which obtained
an accuracy of 0.7 and an F1-score of 0.71. In
Figure 2, the distribution of mutation types among
individuals across generations is illustrated.

The most prevalent mutation type observed
throughout multiple generations stemmed from the
SC prompt engineering technique, with the top-
performing prompt from the final generation be-
ing a product of a SC mutation prompt. However,

1https://huggingface.co/meta-llama/Meta-Llama-3-8B-
Instruct



Figure 1: In our genetic algorithm, each individual has an instruction prompt (IP) guiding the LLM, a mutation
prompt (MP) used to generate the instruction, and a fitness score based on the LLM’s performance with that prompt.
At each generational step, individuals have a probability of undergoing mutation, with the mutation type selected
from a predefined pool. Mutated individuals are added to the population, and once the population cap is reached, a
fitness-based probabilistic selection is applied to determine which individuals advance to the next generation.

Figure 2: Number of individuals from a given mutation
type in the population at a given generational step.

upon reviewing the prompt, we observed the inte-
gration of elements from various prompt engineer-
ing methods. Prompts derived from GK typically
include an enumeration of components to evaluate.
When followed by an SC mutation, the prompt ad-
dresses shortcomings in the components suggested
and guides the model to contextualize them prop-
erly. Additionally, elements of CoT mutations are
evident in the logical step-by-step structure of the
prompt. All these characteristics were present in
the optimized prompt. Therefore, our findings sug-
gest that the optimal prompt engineering approach
involves a blend of different techniques.

The adaptive prompt engineering technique was
developed and evaluated using an open-access
model that can be run locally, enabling researchers
to analyze sensitive content without needing to
send it to third-party organizations. Additionally,
since the model is open-access, there are no associ-

ated usage fees, which reduces costs and improves
accessibility, particularly in less well-resourced
settings. Our algorithm also offers an accessible
approach for public health researchers to identify
self-diagnosed patients on social media for cohort
building. It minimizes the need for expertise in
machine learning or prompt engineering, as SOTA
techniques are integrated into the algorithm. More-
over, our algorithm allows for upgrades upon the
discovery of new prompt engineering techniques,
requiring only their addition to the mutation pool.

5 Conclusion

We used a genetic algorithm to optimize prompts
for LLMs to detect self-disclosed dementia state-
ments in tweets. The optimal prompt achieved an
accuracy of 0.8 and an F1 score of 0.8, surpassing
the BERT classifier, which had an accuracy of 0.7
and an F1 score of 0.71. Additionally, it signifi-
cantly outperformed a method that would solely
rely on key search terms to label users as having
dementia, as our annotation process revealed that
less than 20% of the collected tweets with dementia
self-disclosure statements were authentic. The al-
gorithm used SOTA prompt engineering methods,
and analysis revealed that SC mutations outper-
formed the other mutation types.

Although our algorithm was designed to auto-
mate the annotation of dementia-related data, it
can also assist in the annotation of other types of
data when provided with the appropriate datasets.
We envision that by adapting our algorithm, re-
searchers may find it helpful in supporting the anno-
tation process across various domains, improving
efficiency and reducing manual labor.



References
Mehrnoosh Azizi, Ali Akbar Jamali, and Raymond J

Spiteri. 2024. Identifying X (formerly Twitter) posts
relevant to dementia and Covid-19: Machine learning
approach. JMIR Formative Research, 8:e49562.

Daniel Cabrera Lozoya, Jiahe Liu, Simon D’Alfonso,
and Mike Conway. 2024. Optimizing multimodal
large language models for detection of alcohol adver-
tisements via adaptive prompting. In Proceedings of
the 23rd Workshop on Biomedical Natural Language
Processing, pages 514–525, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Stevie Chancellor, Jessica L. Feuston, and Jayhyun
Chang. 2023. Contextual gaps in machine learning
for mental illness prediction: The case of diagnostic
disclosures. Proceedings of the ACM on Human-
Computer Interaction, 7(CSCW2):1–27.

Chrisantha Fernando, Dylan Banarse, Henryk
Michalewski, Simon Osindero, and Tim
Rocktäschel. 2023. Promptbreeder: Self-
referential self-improvement via prompt evolution.
https://arxiv.org/abs/2309.16797.

George Gkotsis, Christoph Mueller, Richard J.B. Dob-
son, Tim J.P. Hubbard, and Rina Dutta. 2020.
Mining social media data to study the conse-
quences of dementia diagnosis on caregivers and rel-
atives. Dementia and Geriatric Cognitive Disorders,
49(3):295–302.

Inman Harvey. 2009. The microbial genetic algorithm.
In European Conference on Artificial Life.

Viorica Hrincu, Zijian An, Kenneth Joseph, Yu Fei
Jiang, and Julie M. Robillard. 2022. Dementia re-
search on Facebook and Twitter: Current practice
and challenges. Journal of Alzheimer’s Disease,
90(2):447–459.

Susan Kemper, Lydia H. Greiner, Janet G. Mar-
quis, Katherine Prenovost, and Tracy L. Mitzner.
2001. Language decline across the life span: Find-
ings from the nun study. Psychology and Aging,
16(2):227–239.

Daniel Kempler and Mira Goral. 2008. Language and
dementia: Neuropsychological aspects. Annual Re-
view of Applied Linguistics, 28:73–90.

Jiacheng Liu, Alisa Liu, Ximing Lu, Sean Welleck, Pe-
ter West, Ronan Le Bras, Yejin Choi, and Hannaneh
Hajishirzi. 2022. Generated knowledge prompting
for commonsense reasoning. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
3154–3169, Dublin, Ireland. Association for Compu-
tational Linguistics.

Grace M. Leffler and Xin Tong. 2022. A tutorial on
collecting and processing longitudinal social media
data. International Journal of Arts, Humanities amp;
Social Science, 03(10):21–29.

Marry L. McHugh. 2012. Interrater reliability: the
kappa statistic. Biochemia Medica, page 276–282.

Catherine Talbot, Siobhan O’Dwyer, Linda Clare, Janet
Heaton, and Joel Anderson. 2018. Identifying people
with dementia on Twitter. Dementia, 19(4):965–974.

Rui Wang, Hongru Wang, Fei Mi, Yi Chen, Ruifeng Xu,
and Kam-Fai Wong. 2023. Self-critique prompting
with large language models for inductive instructions.
https://arxiv.org/abs/2305.13733.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824–24837. Curran Associates,
Inc.

Akkapon Wongkoblap, Miguel A. Vadillo, and Vasa
Curcin. 2022. Social media big data analysis for
mental health research, page 109–143. Elsevier.

Benfeng Xu, An Yang, Junyang Lin, Quan Wang, Chang
Zhou, Yongdong Zhang, and Zhendong Mao. 2023.
Expertprompting: Instructing large language mod-
els to be distinguished experts. https://arxiv.
org/abs/2305.14688.

Arkaitz Zubiaga. 2018. A longitudinal assessment of
the persistence of twitter datasets. Journal of the
Association for Information Science and Technology,
69(8):974–984.

A Search terms

Table 1 presents the terms used to search for indi-
viduals that self diagnosed with dementia.

B Mutation example

Table 2. presents the initial prompts for each type
of mutation. Figure 3 illustrates an example of a
mutation step. In this scenario a mutated prompt is
created by using a mutation prompt from the Gener-
ated Knowledge (GK) pool to mutate an instruction
prompt.

C Classification example

Figure 4 illustrates the classification process used
in the genetic algorithm.

D BERT hyperparameters

The BERT model was trained for a total of 3 epochs,
using an AdamW optimizer, with an initial learning
rate of 5× 10−5, and a weight decay of 0.01.

https://doi.org/10.2196/49562
https://doi.org/10.2196/49562
https://doi.org/10.2196/49562
https://aclanthology.org/2024.bionlp-1.42
https://aclanthology.org/2024.bionlp-1.42
https://aclanthology.org/2024.bionlp-1.42
https://doi.org/10.1145/3610181
https://doi.org/10.1145/3610181
https://doi.org/10.1145/3610181
https://doi.org/10.48550/ARXIV.2309.16797
https://doi.org/10.48550/ARXIV.2309.16797
https://arxiv.org/abs/2309.16797
https://doi.org/10.1159/000509123
https://doi.org/10.1159/000509123
https://doi.org/10.1159/000509123
https://api.semanticscholar.org/CorpusID:14495302
https://doi.org/10.3233/jad-220525
https://doi.org/10.3233/jad-220525
https://doi.org/10.3233/jad-220525
https://doi.org/10.1037/0882-7974.16.2.227
https://doi.org/10.1037/0882-7974.16.2.227
https://doi.org/10.1017/s0267190508080045
https://doi.org/10.1017/s0267190508080045
https://doi.org/10.18653/v1/2022.acl-long.225
https://doi.org/10.18653/v1/2022.acl-long.225
https://doi.org/10.56734/ijahss.v3n10a2
https://doi.org/10.56734/ijahss.v3n10a2
https://doi.org/10.56734/ijahss.v3n10a2
https://doi.org/10.11613/bm.2012.031
https://doi.org/10.11613/bm.2012.031
https://doi.org/10.1177/1471301218792122
https://doi.org/10.1177/1471301218792122
https://doi.org/10.48550/ARXIV.2305.13733
https://doi.org/10.48550/ARXIV.2305.13733
https://arxiv.org/abs/2305.13733
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://doi.org/10.1016/b978-0-12-822201-0.00018-6
https://doi.org/10.1016/b978-0-12-822201-0.00018-6
http://arxiv.org/abs/2305.14688
http://arxiv.org/abs/2305.14688
https://arxiv.org/abs/2305.14688
https://arxiv.org/abs/2305.14688
https://doi.org/10.1002/asi.24026
https://doi.org/10.1002/asi.24026


E Optimized prompt

The optimal prompt after 20 generational steps
was:

Determine whether the following text is from a
user genuinely self-identifying as having Dementia
or Alzheimer’s by analyzing the language, syntax,
and content for the following criteria:

– Presence of medical terms such as ‘Demen-
tia’, ‘Alzheimer’s’,‘memory loss’, ‘cognitive
decline’, or ‘neurodegenerative disease’, and
assess their usage in context to avoid mere
knowledge-based mentions, considering the
user’s level of medical knowledge and aware-
ness, as well as the specificity and relevance
of the terms to their personal experience.

– Use of first-person narrative, indicating a per-
sonal experience with the condition, including
specific details about the onset, progression,
or impact on daily life, and evaluate the coher-
ence, consistency, and emotional authenticity
of the narrative.

– Expression of emotional distress, such as anx-
iety, fear, or frustration related to the condi-
tion, and evaluate the intensity, authenticity,
and emotional regulation of the user’s lan-
guage, considering factors such as the use of
emotional language, personal anecdotes, and
vulnerability.

– Disclosure of symptoms, including memory
lapses, confusion, difficulty with speech, or
changes in mood, and consider the specificity,
consistency, and progression of the symptom
descriptions over time, as well as the user’s
level of awareness and understanding of their
symptoms.



Figure 3: Example of a mutation step.

Figure 4: Example of a mutation step.

Dementia search terms
I have lewy body I have dementia with lewy bodies
I was diagnosed with lewy body I was diagnosed with dementia with lewy bodies
I’ve been diagnosed with lewy body I’ve been diagnosed with dementia with lewy bodies
I’ve got lewy body I’ve got dementia with lewy bodies
Just been diagnosed with lewy body Just been diagnosed with dementia with lewy bodies
I have dementia I’ve been diagnosed with dementia
I’ve got dementia Just been diagnosed with dementia
I have vascular dementia I was diagnosed with vascular dementia
I’ve been diagnosed with vascular dementia I’ve got vascular dementia
Just been diagnosed with vascular dementia I have alzheimers
I was diagnosed with alzheimers I’ve been diagnosed with alzheimers
I’ve got alzheimers Just been diagnosed with alzheimers

Table 1: Search terms used to collect self-disclosure statements from Twitter.



Mutation type Prompts
Chain of thought Append to the following instruction the following text, "Let’s think step by step."

Decompose and rewrite the instruction as a set of logical steps, rewrite it as a
sentence.
Rewrite the following instruction by adding intermediate steps to enhance its perfor-
mance.

Expert Act as an expert in prompt engineering with 10 years of experience designing
and debugging prompts. Identify the strengths and weaknesses of the following
instruction, think about what changes you would make, and suggest an improved
version.
Imagine you are an expert in generating instructions for large multimodal models.
You are designing an instruction to achieve the best possible result. A colleague
shares their best instruction with you; identify why it is good and generate an even
better one.
Simulate being an expert program in improving instructions, detecting their strengths,
weaknesses, and consistently providing better results. Take this prompt and make it
better.

Generated
Knowledge

Enhance the effectiveness of the following prompt by generating and appending
additional content. Focus on providing specific examples, detailed criteria, or relevant
guidelines to elevate its performance.
Improve the prompt’s performance through the strategic generation and integration
of supplementary content, fostering heightened efficacy within the experimental
domain.
Optimize the prompt’s performance via the meticulous generation and incorporation
of additional content.

Critique Critique the following instruction and propose enhancements to address any identified
shortcomings. Please provide only the refined version in your response.
Review the given instruction, identify any areas for improvement, and suggest
changes to enhance its quality. Please provide a refined version that incorporate these
improvements.
Examine the given instruction, analyze it for potential shortcomings, and suggest
improvements to address any identified issues. Submit only the refined version in
your response, integrating enhancements to elevate its overall quality.

Table 2: Starting prompts for each mutation type.
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